If α, β, γ are zeroes of cubic polynomial x³ + px² + qx + 2 such that αβ+1=0. Find the value  of 2p+q+5.

Solutions.

Here We have,

p(x) = x³ + px² + qx + 2

 αβ+1=0        (Given)

 αβ = -1        …..eq(i)

We know that if α, β, γ are zeroes of any cubic polynomial, then

 αβ+βγ+γα = c/a  = q/1

 -1+ βγ+γα = q       (from eq(i) αβ = -1)

 βγ+γα = q +1

 γ(α+β)= q +1    …..eq(ii)

Product of zeroes of cubic polynomial is -d/a

 αβγ = -2          (from eq(i) αβ = -1)

 (-1)γ = -2

  γ = 2      …..eq(iii)

Now, Putting the value of γ from eq(iii) in eq(ii) we get

 2(α+β)= q +1

 α+β = (q +1)/2     …..eq(iv)

We know that the sum of zeroes is -b/a

 α+β+γ = -p/1         (α+β = (q +1)/2 and γ = 2 )

(q +1)/2 +2 = -p

(q +1+4)/2 = -p

 q + 5 = -2p

 2p + q + 5 = 0

Thus , the value of  2p+q+5 is 0.


Related Questions :-


                                                                           

Post a Comment

Previous Post Next Post